Abstract
Glucose metabolism plays a pivotal role in sustaining the inflammatory response to microbial stimulation by providing sufficient energy in immune cells. The main purpose of our study was to explore whether hexokinase 2 (HK2)-mediated glycolysis affected the expression of receptor activator of NF-κB Ligand (RANKL) in Porphyromonas gingivalis lipopolysaccharide (P. gingivalis-LPS)-treated osteoblasts and evaluate the potential involvement of the AKT/PI3K pathway activation during HK2-mediated glycolysis. Primary mice osteoblasts were treated with P. gingivalis-LPS, whereas the HK2 inhibitor (Lonidamine, LND) and small interference RNA were used to restrain HK2 expression. Conditioned medium from osteoblasts was utilized for culturing osteoclast precursors. The mRNA and protein levels of genes involved in glycolysis and bone metabolism including RANKL and osteoprotegerin (OPG) were detected by real-time PCR and western blotting. HK2 and lactate levels were detected by ELISA. Tartrate-resistant acid phosphatase (TRAP) staining was utilized to assess osteoclast formation. The involvement of the AKT/PI3K pathway in osteoblasts was explored by Western blotting. P. gingivalis-LPS enhanced HK2 expression along with rising glycolysis in osteoblasts. LND and HK2-knockdown decreased RANKL expression and the RANKL/OPG ratio in osteoblasts, leading to less osteoclast formation from osteoclast precursors as evidenced by TRAP staining, while the osteogenic potential and proliferation of osteoblasts were not affected by HK2-knockdown. Moreover, P. gingivalis-LPS activated the AKT/PI3K pathway, which could regulate HK2 and RANKL expression in osteoblasts. HK2-mediated glycolysis promoted RANKL in osteoblasts and enhanced osteoclast differentiation. Targeting glycolysis may provide novel therapeutic methods for reducing alveolar bone loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.