Abstract

Hexavalent chromium is a highly toxic metal that can enter drinking water sources. Chitosan, which contains amino and hydroxyl functional groups, is considered an appropriate candidate to remove heavy metals through absorption. In this study, a novel adsorbent, magnetic nanoparticles of chitosan modified with polyhexamethylene biguanide (Ch-PHMB NPs) was synthesized and was used to successfully remove chromium from aqueous solution. Quadratic models with independent variables including pH, adsorbent dosage, time, and the initial concentration of chromium were proposed through RSM to describe the behavior of both magnetic chitosan (M-Ch) and Ch-PHMB NPs in Cr(VI) removal. Optimized models with adjusted R2 values of 0.8326 and 0.74 for M-Ch and Ch-PHMB NPs were developed. Cr(VI) removal from aqueous solution by both absorbents followed pseudo-second-order kinetics. The experimental data were best fitted to the Temkin and Freundlich models for M-Ch and Ch-PHMB NPs, respectively. M-Ch and Ch-PHMB NPs can effectively remove the hexavalent chromium from aqueous solution with pH above 7. Ch-PHMB NPs have higher removal efficiency than M-Ch, removing up to 70% of Cr(VI) from aqueous solution. However, toxicity evaluation on Daphnia magna revealed that Ch-PHMB NPs was more toxic than M-Ch nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call