Abstract

Hexavalent chromium [Cr(VI)] has become a non-negligible pollutant in the world. Cr(VI) exposure leads to severe damage to the liver, but the mechanisms involved in Cr(VI)-mediated toxicity in the liver are unclear. The present study aimed to explore whether Cr(VI) induces energy metabolism disturbance and cell cycle arrest in human L-02 hepatocytes. We showed that Cr(VI) inhibited state 3 respiration, respiratory control rate (RCR), and subsequently induced energy metabolism disturbance with decreased ATP production. Interestingly, cell cycle analysis by flow cytometry and protein expression analysis by western blotting revealed that low dose of Cr(VI) (4 uM) exposure induced S phase cell cycle arrest with decreased mediator of replication checkpoint 1 (Mrc1) and cyclin-dependent kinase 2 (CDK2), while higher doses of Cr(VI) (16, 32 uM) exposure resulted in G2/M phase arrest with decreased budding uninhibited by benzimidazoles-related 1 (BubR1) and cell division cycle 25 (CDC25). Mechanism study revealed that Cr(VI) decreased the activities of mitochondrial respiratory chain complex (MRCC) I and II, thus leading to ROS accumulation. Moreover, inhibiting ROS production by antioxidant N-acetyl-L-cysteine (NAC) rescued Cr(VI)-induced ATP depletion and cell cycle arrest. ROS-mediated p53 activation was found to involve in Cr(VI)-induced cell cycle arrest, and p53 inhibitor Pifithrin-α (PFT-α) rescued Cr(VI)-induced reduction of check point proteins Mrc1 and BubR1, thus inhibiting cell cycle arrest. In summary, the present study provides experimental evidence that Cr(VI) leads to energy metabolism disturbance and p53-dependent cell cycle arrest via ROS in L-02 hepatocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.