Abstract
The adsorption and growth of ordered para-hexaphenyl (6P) films have been investigated both on clean and partially carbon pre-covered Au(1 1 1) single crystal surfaces by thermal desorption spectroscopy (TDS) and low energy electron diffraction (LEED) under ultra-high vacuum conditions. The existence of a distinct first and second monomolecular 6P layer that clearly separate from the multilayer regime, which comprise lying molecules with respect to the substrate surface, could be inferred from TDS. For both the 6P mono- and multilayer grown on pure Au(1 1 1) the desorption energies have been determined based on experimental TDS data. In particular, for the monolayer regime a coverage dependence of the desorption energy has been found, which is attributed to repulsive interactions between neighbouring 6P molecules adsorbed on the gold surface. The existence of well-ordered film structures could be inferred from LEED for half monolayer and full monolayer thick 6P films. Based on the LEED and TDS data, structural models are presented for these highly ordered organic films. Multi-step dehydrogenation of 6P molecules adsorbed on clean Au(1 1 1) surfaces is reported for temperatures above 650 K together with experimental evidence for the existence of a regular overlayer composed of partially dehydrogenated polycyclic aromatic hydrocarbon (PAH) intermediates. A quite different adsorption/desorption kinetics and film growth has been observed for 6P films grown on carbon pre-covered Au(1 1 1) surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.