Abstract

Quantum mechanics/molecular mechanics (QM/MM) models are applied to investigate the adsorption and cracking of n-hexane on ZSM-5 and Faujasite zeolite structures. These simulations account for the long-range electrostatic and midrange van-der-Waals interactions in the zeolite and provide energy barriers that are close to experimental data. The active acidic site was modeled by dispersion corrected density functional theory (DFT, ω B97X-D6-311/G*). The long-range interactions were calculated by molecular mechanics (MM). The adsorbed molecules under investigation are characterized by their thermodynamic properties (adsorption energy and enthalpy). The influence of the zeolite type on the thermodynamic properties is also pointed out. The results reveal that the kinetics of cracking is insensitive to differences in acid strengths. The thermodynamic data obtained are mainly influenced by the adsorption energy of n-hexane on ZSM-5 and/or Faujasite (Y) structures. The pore sizes of the zeolite types can lead to ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.