Abstract

Biphasic and interpenetrating continuous membranes with precisely controlled two-dimensional (2D)-hexagonal nanoperiodicity were fabricated using amphiphilic block copolymer poly(ethylene oxide)-b-polymethacrylate with azobenzene mesogen units in the side chain [PEOm-b-PMA(Az)n]. On a silica (SiO2) nanodot array templated from the block copolymer membrane, the next phase, such as titanium dioxide (TiO2), or gold (Au), was coated. Herein, the surface modification of the transferred SiO2 nanodot array was crucial to obtaining the interpenetration of the precursor of TiO2 and its continuous contact. The typical size of the hexagonal array (d) and the center-to-center distance (D) of the SiO2 nanodots were (d, D) = (17 nm, 27 nm) and (d, D) = (22 nm, 51 nm), respectively. The interpenetrating and continuous biphasic structure will provide a promising approach to multiferroic materials, interpenetrative heterojunction for solar cells, new integrated catalysts, and so forth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.