Abstract

This paper presents an optimum design for highly birefringent micro structured photonic crystal fiber (PCF). This is designed with novel hexagonal PCF of honeycomb lattice cladding with hexagonal shaped air cavities and the kernel of the hive is formed by two oblong air holes. The dispersion characteristics of this novel structure have been analyzed analytically using Finite Element Method (FEM) and reported for dispersion and nonlinear coefficient including other fiber parameter. This structure is optimized with distinctive parameters of fiber geometry like pitch of the core, diameters of elliptical shaped air cavities, cladding region having ample of space assortment of wavelength from 0.1 m to 2.0 m also made of SF57 glass helps in reaching high birefringence and low dispersion through the optimization of the arrangement and diameter of elliptical and hexagonal air holes. The proposed model has been suggested with high nonlinearity for super continuum generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.