Abstract

The capacity of iron oxide nanocrystals to heat tissue when subjected to an alternating magnetic field (AMF hyperthermia) is shape-selective. Although iron oxide nanostructures with numerous shapes have been synthesized to date, hexagonal Fe3O4 prisms of low toxicity remained elusive. Here, we report the use of a dual ligand system permitting feasible reaction conditions to synthesize nearly perfect hexagonal Fe3O4 nanoplatelet structures, with edge length of 45 ± 5 nm and thickness of 5 to 6 nm. Their Specific Absorption Rate (SAR) is >750 W g(Fe)-1. The Fe3O4 hexagons were coated with a dopamine-based ligand to increase dispersibility in aqueous buffers. The Fe3O4 hexagons were only minimally toxic to RAW264.7 cells, which can be utilized in cell-based cancer targeting approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.