Abstract

Hexagonal circle patterns with constant intersection angles are introduced and studied. It is shown that they are described by discrete integrable systems of Toda type. Conformally symmetric patterns are classified. Circle pattern analogs of holomorphic mappings $z\sp c$ and $\log z$ are constructed as special isomonodromic solutions. Circle patterns studied in the paper include Schramm's circle patterns with the combinatorics of the square grid as a special case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.