Abstract

A global trend towards miniaturization and multiwavelength performance of nanophotonic devices drives research on novel phenomena, such as bound states in the continuum and Mietronics, as well as surveys for high-refractive index and strongly anisotropic materials and metasurfaces. Hexagonal boron nitride (hBN) is one of the promising materials for future nanophotonics owing to its inherent anisotropy and prospects of high-quality monocrystal growth with an atomically flat surface. Here, we present highly accurate optical constants of hBN in the broad wavelength range of 250-1700 nm combining imaging ellipsometry measurements, scanning near-field optical microscopy and first-principles quantum mechanical computations. hBN's high refractive index, up to 2.75 in the ultraviolet (UV) and visible range, broadband birefringence of ∼0.7, and negligible optical losses make it an outstanding material for UV and visible range photonics. Based on our measurement results, we propose and design novel optical elements: handedness-preserving mirrors and subwavelength waveguides with dimensions of 40 nm operating in the visible and UV ranges, respectively. Remarkably, our results offer a unique opportunity to bridge the size gap between photonics and electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call