Abstract

Hydrogen is considered as the most promising clean energy carrier because of its abundance, environmental friendliness and high conversion efficiency. However, developing safe, compact, light weight and cost-effective hydrogen storage materials is one of the most technically challenging barriers to the widespread use of hydrogen as fuel. The present work reports the hydrogen storage performance of multi-walled carbon nanotubes (MWCNT)/hexagonal boron nitride (h-BN) nanocomposites (MWCNT/h-BN), where ultrasonication method is adopted for the synthesis of the MWCNT/h-BN nanocomposites. Hydrogenation process was carried out using Seiverts-like hydrogenation setup. Characterization techniques such as X-ray Diffraction (XRD), Micro-Raman Spectroscopy, Fourier Transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Nitrogen adsorption–desorption isothermal studies (BET), CHN-elemental analysis and Thermogravimetric Analysis (TGA) were used to analyze the samples at various stages of the experiment. A maximum of 2.3 wt% hydrogen storage is achieved in the case of acid treated MWCNTs (A-MWCNT) with 5 wt% of h-BN nanoparticles compared to pure MWCNTs that could store 0.15 wt% only. Moreover the calculated binding energy (0.42 eV) of stored hydrogen of A-MWCNT with 5 wt% of h-BN nanocomposite lies in the recommended range of binding energy (0.2–0.6 eV) for fuel cell applications. The TG study shows that 100% desorption is achieved at the temperature range of 120–410 °C and confirms that the prepared hydrogen storage medium will serve effectively in the realm of hydrogen fuel economy in near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.