Abstract

Hexagonal close-packed Ni (h-Ni) nanocrystals and face-centered cubic Ni (c-Ni) nanoflowers with uniform size and high dispersion have been successfully assembled on graphene nanosheets (GN) via a facile one-step solution-phase strategy under different reaction conditions, where the reduction process of graphite oxide (GO) sheets into GN was accompanied by the generation of Ni nanocrystals. The reduction of GO by this method is effective, which was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopy and is comparable to conventional methods. The phase and morphology of nickel can be easily tuned by varying the reaction temperature and solvent. It was shown that the as-formed h-Ni nanocrystals with a diameter as small as 3 nm are grown densely and uniformly on the graphene sheets, and as a result the aggregation of the h-Ni nanocrystals was effectively prevented. In addition, c-Ni nanospheres assembled by c-Ni nanocrystals with a size of 15 nm were also uniformly deposited on the graphene sheets. The investigation of the microwave absorbability reveals that the three Ni/GN nanocomposites exhibit excellent microwave absorbability, which is stronger than the corresponding Ni nanostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call