Abstract

Through introducing six fluorine atoms onto quinoxaline (Qx), a new electron acceptor unit-hexafluoroquinoxaline (HFQx) is first synthesized. On the basis of this unit, we synthesize a new donor-acceptor (D-A) copolymer (HFQx-T), which is composed of a benzodithiophene (BDT) derivative donor block and an HFQx accepting block. The strong electron-withdrawing properties of fluorine atoms increase significantly the open-circuit voltage (Voc) by tuning the highest occupied molecular orbital (HOMO) energy level. In addition, fluorine atoms enhance the absorption coefficient of the conjugated copolymer and change the film morphology, which implies an increase of the short-circuit current density (Jsc) and fill factor (FF). Indeed, the HFQx-T:ITIC blended film achieves an impressive power conversion efficiency (PCE) of 9.4% with large short-current density (Jsc) of 15.60 mA/cm2, high Voc of 0.92 V, and FF of 65% via two step annealing (thermal annealing (TA) and solvent vapor annealing (SVA) treatments). The excellent results obtained show that the new copolymer HFQx-T synthesized could be a promising candidate for organic photovoltaics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.