Abstract

The study on membrane proteins is an important challenge mainly because of their very poor solubility in various solvents. The traditional recombinant expression strategy and the native chemical ligation method both have difficulty in generating sufficient amounts of desired proteins with high efficiency. Previous studies have shown that multiply fluorinated alcohols exhibit good ability to dissolve difficult peptide sequences, especially hexafluoro-2-propanol (HFIP). In the present study we systematically studied the capability of solvents containing different percentage of HFIP in dissolving transmembrane peptides. Through both HPLC and UV analyses we concluded that 60% HFIP/8 M urea constituted a good solvent system. In this solvent system we also optimized conditions to perform native chemical ligation (NCL). Under the optimized conditions we successfully achieved NCL’s for both dipeptide formation and the synthesis of a model protein (Trifolitoxin). These results suggested that HFIP was a potential cosolvent that could be used in the ligation of poorly soluble peptides for the generation of membrane proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.