Abstract

7,10,13-Hexadecatrienoic acid (16:3) is abundant in many plant species. However, its metabolism through the lipoxygenase pathway is not sufficiently understood. The goal of present work was to investigate the oxygenation of 16:3 by different plant lipoxygenases and to study the occurrence of oxygenated derivatives of 16:3 in plant seedlings. The recombinant maize 9-lipoxygenase specifically converted 16:3 into (7S)-hydroperoxide. Identification of this novel oxylipin was substantiated by data of GC-MS, LC-MS/MS, 1H-NMR, and 2D-COSY as well as by deuterium labeling from [(2)H(6)]16:3. Soybean lipoxygenase 1 produced 91% (11S)-hydroperoxide and 6% racemic 14-hydroperoxide. Recombinant soybean lipoxygenase 2 (specifically oxidizing linoleate into 13-hydroperoxide) lacked any specificity towards 16:3. Lipoxygenase 2 produced 7-, 8-, 10-, 11-, 13-, and 14-hydroperoxides of 16:3, as well as a significant amount of bis-allylic 9-hydroperoxide. Seedlings of several examined plant species possessed free hydroxy derivatives of 16:3 (HHTs), as well as their ethyl esters. Interestingly, HHTs occur not only in "16:3 plants", but also in typical "18:3 plants" like pea and soybean seedlings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.