Abstract
Calculations of the first bond dissociation energies (FBDEs) and other molecular properties of M(CO)6, where M = Mo, W, and Sg, have been performed using a variety of nonrelativistic and relativistic methods, such as ZORA-DFT, X2c+AMFI-CCSD(T), and Dirac-Coulomb density functional theory. The aim of the study is to assist experiments on the measurements of the FBDE of Sg(CO)6. We have found that, different from the results published earlier, the metal-CO bond in Sg(CO)6 should be weaker than that in W(CO)6. A comparison of the relativistic and nonrelativistic FBDE values, as well as molecular orbital and vibrational frequency analyses within both the nonrelativistic and relativistic approaches, have shown that this is a relativistic, predominantly scalar, effect causing weaker d(M) → π(CO) back-bonding in Sg(CO)6 than in the lighter homologues. Good agreement between the calculated FBDEs in this work and the experimental FBDEs for the Mo and W compounds gives credit to the present FBDE of Sg(CO)6, which should serve as guidance for ongoing experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.