Abstract

Gold electrodes have been used in a wide range of electrochemical biosensors because their functionalization process with thiols has been well described and, in general, they offer good chemical stability. However, one of the most commonly used redox-pairs in electrochemical impedance spectroscopy, Hexacyanoferrate (II)/(III), causes corrosion of the gold electrodes and consequently damages the surface modification. This leads to alterations of the sensing signals, and thus, renders the quantitative and sensitive detection of target molecules virtually impossible. To overcome this problem we introduced the in-situ generation of Hexaammineruthenium (II)/(III) as redox-pair during the impedimetric measurement by applying a DC-bias. This DC-bias was chosen in such a way that it supplied Hexaammineruthenium (II) in a suitable concentration at the electrode surface by reducing Hexaammineruthenium (III). We compared the stability of photolithographically fabricated thin-film and screen-printed gold electrodes in Hexacyanoferrate and Hexaammineruthenium solutions. Further, long-time characterization of the electrochemical properties with cyclic voltammetry and electrochemical impedance spectroscopy revealed that Hexaammineruthenium (II)/(III) was an excellent redox-pair for stable impedimetric measurements with gold electrodes. To demonstrate the suitability of Hexaammineruthenium for biosensing we applied it for the impedimetric detection of human-IgG. This biosensor exhibited a linear range from 11.3 ng/mL to 113 μg/mL, which is a suitable range for diagnostic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.