Abstract

In fusion environment, large amounts of helium (He) atoms are produced by transmutation along with structural damage in the structural materials, causing material swelling and degrading of physical properties. To understand the microscopic mechanism of He trapping in vacancies and voids, we explored He–vacancy interactions in HenVam (Va for vacancy) clusters (n, m=1–4) and multiple He trapping in a 7-atom void of silicon carbide (SiC) by first-principles calculations. The binding energy between He and the HenVam clusters increases with the number of vacancies, while the vacancy binding energy gradually increases with the number of He atoms. Furthermore, a small cavity of about 0.55nm in diameter can accommodate up to 14 He atoms energetically and the corresponding internal pressure is estimated to be 2.5GPa. The tendency of He trapping in small voids provides an explanation for the experimentally observed He bubble formation at vacancy defects in SiC materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.