Abstract
This paper proposes a novel cooperative localization method for distributed wireless networks in 3-dimensional (3D) global positioning system (GPS) denied environments. The proposed method, which is referred to as hybrid ellipsoidal variational algorithm (HEVA), combines the use of non-parametric belief propagation (NBP) and variational Bayes (VB) to benefit from both the use of the rich information in NBP and compact communication size of a parametric form. InHEVA, two novel filters are also employed. The first one mitigates non-line-of-sight (NLoS) timeof- arrival (ToA) messages, permitting it to work well in high noise environments with NLoS bias while the second one decreases the number of calculations. Simulation results illustrate that HEVA significantly outperforms traditional NBP methods in localization while requires only 50%of their complexity. The superiority of VB over other clustering techniques is also shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.