Abstract

Determining the feasibility of a particular search program is important in practical situations, especially when the computation involved can easily require days, or even years. To help make such predictions, a simple procedure based on a stratified sampling approach is presented. This new method, which is called heuristic sampling, is a generalization of Knuth’s original algorithm for estimating the efficiency of backtrack programs. With the aid of simple heuristics, this method can produce significantly more accurate cost estimates for commonly used tree search algorithms such as depth-first, breadth-first, best-first, and iterative-deepening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.