Abstract

Knowledge management consists of transforming data into beneficial knowledge in a business environment. Today, large amounts of data related to the execution of business processes called event logs are stored in the information systems. Process mining enables knowledge management by extracting knowledge from these historical event logs. Most organisations seek to understand how their business processes are executed to improve them. Therefore, several process discovery techniques have been developed in the field of process mining. However, none of the existing algorithms can discover all types of process constructs that can exist in an event log in a restricted time. This paper proposes a new heuristic rule-based technique that is capable of constructing process models with standard constructs, short loops, invisible tasks, duplicate tasks, and non-free choice constructs. Artificial and real-life data have been used to evaluate the algorithm. The results demonstrate that the aforementioned characteristics can be discovered correctly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.