Abstract

A heuristic model of chemically induced electron spin polarization (CIDEP) that breaks the polarization mechanism into its component steps, with each step governed by an appropriate solution of the diffusion equation, is extended from a three to a two-dimensional system. The required solution of the 2D diffusion equation is provided by a relatively simple analytic approximation to the usual infinite series solution. The model yields the polarization and its time development for weak to strong singlet-triplet mixing in the radical pairs, whereas previous models are limited to very weak or very strong mixing. Its results agree with a variational solution of an integral equation of Monchick and are encouraging for observation of CIDEP in dimensionally restricted systems. The method also may be applicable to other diffusion-controlled, spin-dependent chemistry in spatially restricted environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.