Abstract

In this research we test and compare three possible atom-based screening functions used in the heuristic molecular lipophilicity potential (HMLP). Screening function 1 is a power distance-dependent function, bi/[formula: see text] Ri-r [formula: see text] gamma, screening function 2 is an exponential distance-dependent function, bi exp(-[formula: see text] Ri-r [formula: see text]/d0), and screening function 3 is a weighted distance-dependent function, sign(bi) exp[-xi [formula: see text] Ri-r [formula: see text]/magnitude of bi)]. For every screening function, the parameters (gamma, d0, and xi) are optimized using 41 common organic molecules of 4 types of compounds: aliphatic alcohols, aliphatic carboxylic acids, aliphatic amines, and aliphatic alkanes. The results of calculations show that screening function 3 cannot give chemically reasonable results, however, both the power screening function and the exponential screening function give chemically satisfactory results. There are two notable differences between screening functions 1 and 2. First, the exponential screening function has larger values in the short distance than the power screening function, therefore more influence from the nearest neighbors is involved using screening function 2 than screening function 1. Second, the power screening function has larger values in the long distance than the exponential screening function, therefore screening function 1 is effected by atoms at long distance more than screening function 2. For screening function 1, the suitable range of parameter gamma is 1.0 < gamma < 3.0, gamma = 2.3 is recommended, and gamma = 2.0 is the nearest integral value. For screening function 2, the suitable range of parameter d0 is 1.5 < d0 < 3.0, and d0 = 2.0 is recommended. HMLP developed in this research provides a potential tool for computer-aided three-dimensional drug design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.