Abstract

Nowadays, population growth and urban development lead to having an efficient waste management system (WMS) based on recent advances and trends. Alongside all functions and procedures in these systems, the waste collection plays a significant role. This study proposes a two-echelon WMS to minimize operational costs and environmental impact by utilizing the industry 4.0 concept. Both models utilize modern traceability Internet of Thing-based devices to compare real-time information of waste level in bins and separation centers with the threshold waste level (TWL) parameter. The first model optimizes the operational cost and CO2 emission of collecting waste from bins to the separation center by considering the time windows. A capacitated vehicle routing problem is designed as a later model-based to minimize the cost of waste transferring to recycling centers. In addition, to find the optimal solution, recent meta-heuristic algorithms are employed, and several novel heuristics based on the problem's specifications are developed. Furthermore, the developed heuristics methods are utilized to generate the initial feasible solutions in meta-heuristics and compared with random ones. The performance of the proposed algorithms is probed, and Best Worst Method (BWM) is applied to rank the algorithms based on relative percentage deviation, relative deviation index and hitting time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.