Abstract
A production scheduling problem for making plastic molds of hi-fi models is considered. The objective is to minimize the total machine makespan in the presence of due dates, variable lot size, multiple machine types, sequence dependent, machine dependent setup times, and inventory limits. Goal programming and load balancing are applied to select the set of machine types and assign mold types to machines, resulting in a set of single-machine scheduling problems. A mixed-integer program (MIP) is formulated for the general problem but could solve only small instances. A single-machine scheduling heuristic is designed to adopt a production sequence from a travelling salesman solution. The start time of every cycle is determined by a simplified MIP. Production cycles are defined to equalize the stockout times of mold types. A post-processing step reduces the number of setups in the last cycle. Results using real-life data are promising. Characteristics giving rise to high machine utilization are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.