Abstract
Computer methods of accurate gene finding in DNA sequences require models of protein coding and non-coding regions derived either from experimentally validated training sets or from large amounts of anonymous DNA sequence. Here we propose a new, heuristic method producing fairly accurate inhomogeneous Markov models of protein coding regions. The new method needs such a small amount of DNA sequence data that the model can be built 'on the fly' by a web server for any DNA sequence >400 nt. Tests on 10 complete bacterial genomes performed with the GeneMark.hmm program demonstrated the ability of the new models to detect 93.1% of annotated genes on average, while models built by traditional training predict an average of 93.9% of genes. Models built by the heuristic approach could be used to find genes in small fragments of anonymous prokaryotic genomes and in genomes of organelles, viruses, phages and plasmids, as well as in highly inhomogeneous genomes where adjustment of models to local DNA composition is needed. The heuristic method also gives an insight into the mechanism of codon usage pattern evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.