Abstract

Many vision problems require fast and accurate tracking of objects in dynamic scenes. These problems can be formulated as exploration problems and thus can be expressed as a search into a state space based approach. However, these problems are hard to solve because they involve search through a space of transformations corresponding to all the possible motion and deformation. In this paper, we propose a heuristic algorithm through the space of transformations for computing target 2D motion. Three features are combined in order to compute efficient motion: (1) a quality of function match based on a holistic similarity measurement, (2) Kullback–Leibler measure as heuristic to guide the search process and (3) incorporation of target dynamics into the search process for computing the most promising search alternatives. Once 2D motion has been calculated, the result value of the quality of function match computed is used with the purpose of verifying template updates. A template will be updated only when the target object has evolved to a transformed shape dissimilar with respect to the actual shape. Also, a short-term memory subsystem is included with the purpose of recovering previous views of the target object. The paper includes experimental evaluations with video streams that illustrate the efficiency and suitability for real-time vision based tasks in unrestricted environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.