Abstract

Character rigging is universally needed in computer graphics but notoriously laborious. We present a new method, HeterSkinNet, aiming to fully automate such processes and significantly boost productivity. Given a character mesh and skeleton as input, our method builds a heterogeneous graph that treats the mesh vertices and the skeletal bones as nodes of different types and uses graph convolutions to learn their relationships. To tackle the graph heterogeneity, we propose a new graph network convolution operator that transfers information between heterogeneous nodes. The convolution is based on a new distance HollowDist that quantifies the relations between mesh vertices and bones. We show that HeterSkinNet is robust for production characters by providing the ability to incorporate meshes and skeletons with arbitrary topologies and morphologies (e.g., out-of-body bones, disconnected mesh components, etc.). Through exhaustive comparisons, we show that HeterSkinNet outperforms state-of-the-art methods by large margins in terms of rigging accuracy and naturalness. HeterSkinNet provides a solution for effective and robust character rigging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.