Abstract

ABSTRACTLung diseases impose a huge economic and health burden worldwide. A key aspect of several adult lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), including emphysema, is aberrant tissue repair, which leads to an accumulation of damage and impaired respiratory function. Currently, there are few effective treatments available for these diseases and their incidence is rising. The planar cell polarity (PCP) pathway is critical for the embryonic development of many organs, including kidney and lung. We have previously shown that perturbation of the PCP pathway impairs tissue morphogenesis, which disrupts the number and shape of epithelial tubes formed within these organs during embryogenesis. However, very little is known about the role of the PCP pathway beyond birth, partly because of the perinatal lethality of many PCP mouse mutant lines. Here, we investigate heterozygous Looptail (Lp) mice, in which a single copy of the core PCP gene, Vangl2, is disrupted. We show that these mice are viable but display severe airspace enlargement and impaired adult lung function. Underlying these defects, we find that Vangl2Lp/+ lungs exhibit altered distribution of actin microfilaments and abnormal regulation of the actin-modifying protein cofilin. In addition, we show that Vangl2Lp/+ lungs exhibit many of the hallmarks of tissue damage, including an altered macrophage population, abnormal elastin deposition and elevated levels of the elastin-modifying enzyme, Mmp12, all of which are observed in emphysema. In vitro, disruption of VANGL2 impairs directed cell migration and reduces the rate of repair following scratch wounding of human alveolar epithelial cells. Moreover, using population data from a birth cohort of young adults, all aged 31, we found evidence of an interactive effect between VANGL2 and smoking on lung function. Finally, we show that PCP genes VANGL2 and SCRIB are significantly downregulated in lung tissue from patients with emphysema. Our data reveal an important novel role for the PCP pathway in adult lung homeostasis and repair and shed new light on the genetic factors which may modify destructive lung diseases such as emphysema.

Highlights

  • The burden of lung disease is enormous

  • The planar cell polarity (PCP) pathway has been extensively studied in embryonic development, but the consequences of these defects in adults are poorly understood, partly because of the perinatal lethality of murine homozygous PCP gene mutants (Copley et al, 2013; Juriloff and Harris, 2012)

  • Given the known role of this pathway in actin cytoskeleton remodelling and collective cell migration during embryonic development, we hypothesized that the PCP pathway might be important for adult lung homeostasis and in tissue repair following injury

Read more

Summary

Introduction

The burden of lung disease is enormous. A key aspect of several adult lung diseases, including COPD, IPF and acute lung injury (ALI), is aberrant tissue repair, which culminates in declining lung function, tissue damage, and frequently, respiratory failure (Chilosi et al, 2013; Murray, 2012). Despite the substantial burden of degenerative lung diseases, there are currently no effective treatments available to modify repair and regeneration of damaged tissue. Identification of signalling pathways employed during development that are capable of contributing to tissue repair, may lead to novel regenerative/repair approaches to treat lung disease (Kotton and Morrisey, 2014)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call