Abstract

Co-aggregation involving different amyloidogenic sequences has been emphasized recently in the modified amyloid cascade hypothesis. Yet, molecular-level interactions between two predominant β-amyloid peptide sequences, Aβ40 and Aβ42, in the fibrillation process in membrane-mimicked environments remain unclear. Here, we report biophysical evidence that demonstrates the molecular-level interactions between Aβ40 and Aβ42 at the membrane-associated conucleation stage using dynamic nuclear polarization-enhanced solid-state NMR spectroscopy. These residue-specific contacts are distinguished from those reported in mature fibrils formed by either Aβ40 or Aβ42. Meanwhile, site-specific interactions between Aβ and lipid molecules and modulation of microsecond-time-scale lipid dynamics are observed, which may be responsible for the more rapid and significant membrane content leakage compared to that with Aβ40 alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.