Abstract

Metallodithiolene complexes of the type [(R2C2S2)M(η2-tpbz)] [R = CN, Ph, or p-anisyl; M = Ni2+, Pd2+, or Pt2+; tpbz = 1,2,4,5-tetrakis(diphenylphosphino)benzene] chelate transition metals ions to form trimetallic arrays [[(R2C2S2)M(tpbz)]2M']n+, where M' is square planar Pt2+, tetrahedral Cu+, Ag+, or Au+, or octahedral {ReBr(CO)}/{Re(CO)2}+. Forcing conditions (190 °C reflux in decalin, 72 h) are demanded for the Re+ compounds. With third-row metals at the nexus, the compounds are stable to air. Twelve members of the set have been characterized by X-ray diffraction and reveal dithiolene centroid-centroid distances ranging from 22.4 to 24.0 Å. Folding around each tpbz intrachelate P···P axis such that the MP2/M'P2 planes meet the tpbz P2C6P2 mean plane at non-zero values gives rise to core topologies that appear "S-like" or herringbone-like for M' = Pt2+ or {ReBr(CO)}/{Re(CO)2}+. Calculations reveal that departure from idealized D2h/D2d/C2v symmetries is induced by steric crowding between Ph groups and that dynamic, fluxional behavior is pertinent to the solution phase because multiple, lower-symmetry minima of comparable energy exist. Spectroscopically, the formation of the trimetallic arrays is marked by a shift of the open end 31P nuclear magnetic resonance signal from approximately -14.5 ppm to approximately +41, approximately +20.5, and approximately +28.5 ppm for M' = Pt2+, Au+, and {ReBr(CO)}/{Re(CO)2}+, respectively. Electrochemically, dithiolene-based oxidations are observed for the R = Ph and M' = Pt2+ or Au+ compounds but at potentials that are anodically shifted relative to charge-neutral [[(R2C2S2)M]2(μ-tpbz)]. The compounds reported clarify the possibilities for the synthesis of assemblies in which weakly coupled spins may be created in their modular (R2C2S2)M and M' parts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call