Abstract

In animals, heterotrimeric guanine nucleotide-binding proteins (G proteins) transduce signals perceived by numerous G protein-coupled receptors (GPCRs). However, no canonical GPCRs with guanine nucleotide exchange factor (GEF) activity are present in plant genomes. Accumulated evidence indicates that, instead of GPCRs, the receptor-like kinases (RLKs) function upstream of G proteins in plants. Regulator of G protein signaling 1 (RGS1) functions to convert the GTP-bound Gα to the GDP-bound form through its GTPase-accelerating protein (GAP) activity. Because of the intrinsic differences in the biochemical properties between Arabidopsis and animal Gα, the actions of animal and Arabidopsis RGS1 result in contrasting outcomes in G signaling activation/deactivation. Animal RGSs accelerate the deactivation of the activated G signaling, whereas Arabidopsis RGS1 prevents the activation of G signaling in the resting state. Phosphorylation of Arabidopsis RGS1 triggered by ligand-RLK recognition results in the endocytosis or degradation of RGS1, leading to the separation of RGS1 from Gα and thus the derepression of G signaling. Here, we summarize the involvement of the G proteins in plant immunity, with a special focus on the molecular mechanism of G signaling activation/deactivation regulated by RLKs and RGS1. We also provide a brief perspective on the outstanding questions that need to be addressed to fully understand G signaling in plant immunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call