Abstract

We present a formulation of heterotic Double Field Theory (DFT), where the fundamental fields are in O(D, D) representations. The theory is obtained splitting an O(D, D + K ) duality invariant DFT. This procedure produces a Green-Schwarz mechanism for the generalized metric, and a fundamental gauge field which transforms as a gauge connection only to leading order. After parametrization, the former induces a non-covariant transformation on the metric tensor, which can be removed considering field redefinitions, and an ordinary Green-Schwarz mechanism on the b-field. Within this framework we explore perturbative properties of heterotic DFT. We use a relaxed version of the generalized Kerr-Schild ansatz (GKSA), where the generalized background metric is perturbed up to quadratic order considering a single null vector and the gauge field is linearly perturbed before parametrization. Finally we compare the dynamics of the gauge field and the generalized metric in order to inspect the behavior of the classical double copy correspondence at the DFT level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.