Abstract

In organometallic vapor phase epitaxy, changes in growth conditions can be used to modulate the extent of CuPt ordering and, hence, the band gap energy of GaInP. One method is to add Te during growth. An increase in the band gap energy of 0.1 eV due to a decrease in ordering has been obtained by increasing the input pressure of diethyltelluride from 0 to 8×10−6 Torr, which corresponds to a doping concentration of 6×1017 cm−3. This simple procedure offers an attractive method to grow quantum wells (QWs) and superlattices, which are useful for band gap engineering, by modulating the input pressure of the Te precursor. Various heterostructures with abrupt interfaces were successfully grown with interruptions at the interfaces between the Te-doped and undoped GaInP layers. QWs as thin as 10 nm can be clearly seen from transmission electron microscope images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.