Abstract
It is shown that molecular-beam-epitaxy technology can be used to fabricate heterostructures for quantum-cascade lasers of the wavelength range of 7–8 μm with an active region comprising 50 cascades based on a heterojunction of In0.53Ga0.47As/Al0.48In0.52As solid solutions. The optical emission is obtained using a quantum-cascade design operating on the principle of two-phonon resonance scattering. The properties of heterostructures were studied by the methods of X-ray diffraction and transmission electron microscopy, which showed their high quality with respect to the identical compositions and thicknesses of all 50 cascades. Stripe-geometry lasers made of these heterostructures exhibited lasing with a threshold current density below 1.6 kA/cm2 at a temperature of 78 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.