Abstract

In this work, the effect of Pd, Au and PdAu nanoparticles on sensor response of cobalt phthalocyanine films to hydrogen was studied. For this purpose, novel heterostructures based on cobalt phthalocyanine and PdAu nanoalloys were obtained by a combination of vacuum thermal evaporation and pulsed metalorganic chemical vapor deposition (MOCVD) and investigated as active layers for hydrogen detection. The structural features and phase composition of the prepared heterostructures were studied by the techniques of X-ray diffraction, transmission electron microscopy and electron diffraction. The concentration of metal nanoparticles in the samples was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The chemiresistive sensor response of CoPc/M (M = Pd, Au, Pd0.2Au0.8 and Pd0.8Au0.2) to hydrogen (100–400 ppm, room temperature) was compared with that of bare CoPc films. It was shown that the sensor response of the investigated heterostructures to hydrogen (300 ppm) increased in the order CoPc (0.2%) < CoPc/Pd0.2Au0.8 (1.9%) ~ CoPc/Au (2.2%) < CoPc/Pd (2.7%) < CoPc/Pd0.8Au0.2 (5.6%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.