Abstract
In this paper, we report a simple and effective method to simultaneously achieve a high charge-carrier mobility and low off current in conjugated polymer-wrapped semiconducting single-walled carbon nanotube (s-SWNT) transistors by applying a SWNT bilayer. To achieve the high mobility and low off current, highly purified and less purified s-SWNTs are successively coated to form the semiconducting layer consisting of poly (3-dodecylthiophene-2,5-diyl) (P3DDT)-wrapped high-pressure carbon mono oxide (HiPCO) SWNT (P3DDT-HiPCO) and poly (9, 9-di-n-dodecylfluorene) (PFDD)-wrapped plasma discharge (PD) SWNT (PFDD-PD). The SWNT transistors with bilayer SWNT networked film showed highly improved hole field-effect mobility (6.18 ± 0.85 cm2V−1s−1 average), on/off current ratio (107), and off current (∼1 pA). Thus, the combination of less purified PFDD-PD (98%–99%) charge-injection layer and highly purified s-P3DDT-HiPCO (>99%) charge-transport layer as the bi-layered semiconducting film achieved high mobility and low off current simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.