Abstract

The electrochemical reforming of ethanol into hydrogen and hydrocarbons can reduce the electric potential energy barrier of hydrogen production from electrochemical water splitting, obtaining high value-added anode products. In this work, Ru/Ni(OH)2 heterostructured nanomaterials were synthesized successfully by an in situ reduction strategy with remarkable multifunctional catalytic properties. In the hydrogen evolution reaction, Ru/Ni(OH)2 exhibits a smaller overpotential of 31 mV to obtain a current density of 10 mA/cm2, which is better than that of commercial Pt/C. Notably, such heterostructured Ru/Ni(OH)2 nanomaterials also perform an outstanding catalytic selectivity toward an acetaldehyde product in the oxidation of ethanol. DFT calculations reveal that abundant Ru(0)-Ni(II) heterostructured sites are the key factor for the excellent performances. As a result, an ethanol-selective reforming electrolyzer driven by a 2 V solar cell is constructed to produce hydrogen and acetaldehyde in the cathodic and anodic part, respectively, via using Ru/Ni(OH)2 heterostructured catalysts. This work provides a forward-looking technical guidance for the design of novel energy conversion systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.