Abstract

Finding a highly efficient catalyst for proton exchange membrane fuel cells is still the subject of extensive research. This article describes heterostructured Pd/Ti/Pd bimetallic thin films prepared using a strain-release technology as electrocatalysts for fuel cells. With their particular structure, these materials exhibit intriguing electrocatalytic activity toward the oxidation of both methanol and formic acid, yielding current densities of 0.17 and 0.56 A mg-1Pd, much superior to that of the commercial Pd black catalyst. Moreover, the Pd/Ti/Pd thin films display a low onset oxidation potential and extremely high current retention in both acidic and alkaline media. The carbon monoxide poisoning resistance is also significantly enhanced, thus contributing to ultrahigh stability in the long-term electrocatalytic processes. Their encouraging performance implies that such composites could be potential materials for energy conversion in the fuel cell field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.