Abstract

Conventional titanium dioxide(TiO2) photocatalyst could absorb only ultraviolet light due to its wide bandgap. In this paper, black TiO2 with narrow bandgap was prepared by introducing oxygen vacancies. Meanwhile, nitrogen(N) and sulfur(S) elements were doped to further broaden the visible light response range of TiO2(NS-BT), and then heterostructured N,S-doped black TiO2/g-C3N4(CN/NS-BT) was successfully constructed by easily accessible route. The formation of CN/NS-BT heterojunction structure increased the generation and separation efficiency of photogenerated electron-hole pairs, as well as accelerated the transfer rate of the carriers. The as-prepared CN/NS-BT exhibited excellent photocatalytic performance towards the degradation of Rhodamine B(RhB) under visible light irradiation with satisfactory stability. The apparent reaction rate constant of CN/NS-BT(0.0079) was 15.8-fold higher than that of commercial P25(0.0005). The structure, morphology, chemical composition and optical properties of the as-prepared CN/NS-BT were characterized by various analytical methods, and possible photocatalytic enhancement mechanism was proposed. Overall, CN/NS-BT composites look promising as photocatalytic material for future environmental treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.