Abstract

The natural abundance of sodium has fostered the development of sodium-ion batteries for large-scale energy storage. However, the low capacity of the anodes hinders their future application. Herein, carbon-encapsulated MnSe-FeSe nanorods (MnSe-FeSe@C) have been fabricated by the in-situ transformation from polydopamine-coated MnO(OH)-Fe2O3. The heterostructure constructed by MnSe and FeSe nanocrystals induces the formation of built-in electric fields, accelerating electron transfer and ion diffusion, thereby improving reaction kinetics. In addition, carbon enclosure can buffer the volumetric stress and enhance the electrical conductivity. These aspects cooperatively endow the anode with superior cycling stability and distinguished rate performance. Specifically, the discharge capacity of MnSe-FeSe@C reaches 414.3 mA h g−1 at 0.1 A g−1 and 388.8 mA h g−1 even at a high current density of 5.0 A g−1. In addition, it still retains a high reversible capacity of 449.2 mA h g−1 after 700 long cycles at 1.0 A g−1. Further, the ab initio calculation has been employed to authenticate the existence of the built-in electric field by Bader charge, indicating that 0.24 electrons in MnSe were transferred to FeSe. The in-situ XRD has been used to evaluate the phase transition during the charging/discharging process, revealing the sodium ion storage mechanism. The construction of heterostructure material paves a new way to design performance-enhanced anode materials for sodium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.