Abstract

ZnO and MgO/ZnO (mass ratio 2: 5, 5: 5 and 8: 5) heterostructure photocatalysts (Mg2Zn5, Mg5Zn5 and Mg8Zn5, respectively) were successfully synthesized via co-precipitation method. MgO/ZnO composites were characterized by scanning electron microscopy (SEM), X-Ray diffraction and low temperature nitrogen adsorption–desorption isotherm. According to SEM images all composites consisted of spherical granules with particle sizes of 30–50 nm. The band gap value of ZnO was found to be lower than that of MgO/ZnO composites as observed during the optical studies. Pure ZnO showed lower photocatalytic activity (38%) in the degradation of 2,6-dichlorophenol (2,6-DCP) than MgO/ZnO composites. Mg5Zn5 composite with a higher concentration of defects in crystallites was more active in the photocatalytic degradation (79.5%) than Mg8Zn5 (61.2%) and Mg2Zn5 (63.5%). High-resolution mass spectrometry-and UV-Vis spectroscopic analysis of the by-products, derived from model pollutant 2,6-DCP, proved the successful photocatalytic performance of Mg5Zn5 under the UV light. The synthesized composites are future candidates against other potential environmental pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.