Abstract
Ultrafast UV photodetectors (UV PDs) are crucial components in modern optoelectronics because conventional detectors have reached a bottleneck with low integration, functionalities, and efficiency. Core-shell metal oxide nanobrushes (MOx NBs)-based UV PDs have enhanced the absorption, tunable performance, and good compatibility for diversified applications, including imaging, self-powered systems, remote communications, security, and wearable electronics. Core-shell PDs are developed with complex hierarchical or heterostructured configurations that encapsulate 1D MOx nanowires on 1D nanostructures (NSs) to transport high charge carrier mobility or efficiency by reducing scattering and recombination rates. This review presents a thorough development of MOx core-shell microstructure for the enhancement of detection response and stability with controlled parameters for multifunctional applications. Significant roles of MOx NBs-based UV PDs exploring various growth techniques and complex photodetection mechanisms with their challenges, limitations, and prospects, providing valuable insights for propelling the progression of photodetector technology in this comprehensive review are discussed meticulously. The novelty of MOx NBs-based UV PDs lies in their distinctive brush-like morphology aspect, tunable properties, and improved performance compared to other NSs, for rapid and sensitive response ( ̴µs-ms) under UV light illumination. The diverse photoresponse parameters and multifunctional applications of UV PDs incorporating MOx NBs are carefully summarized, which will set the roadmap for future photodetector technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.