Abstract

Rational constructing hierarchical core–shell structured photocatalysts to accelerate the separation and transfer of light-induced electrons is extraordinarily indispensable to boost the performance of photocatalytic hydrogen evolution. Herein, we integrate two-dimensional (2D) ZnIn2S4 (ZIS) nanosheets and flower-like CoS1.097 assembled with one-dimensional (1D) nanothorns to construct hierarchical 1D/2D CoS1.097@ZIS with ZIS nanosheets and CoS1.097 nanothorns as shell and core respectively as an effective visible light photocatalyst to produce hydrogen from water splitting. The optimized 8.5-CoS1.097@ZIS photocatalyst demonstrates an outstanding activity with hydrogen production rate of 2632.33 µmol g−1h−1 (6.42 times of ZIS alone) and good stability for photocatalytic water splitting. The enhanced performance can be ascribed to the distinctive structure and composition of CoS1.097@ZIS, which affords intimate contact interface, strong light absorption and abundant reaction sites, thus facilitating the separation and transfer of the charge carriers as well as inhibiting charge recombination. This work offers a prospective approach to construct 1D/2D core–shell ZIS-based photocatalysts for hydrogen production from water splitting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call