Abstract

The electrochemical reduction of nitrate (NO3-) to ammonia (NH3) has emerged as an attractive approach for selectively reducing NO3- to highly value-added NH3 and removing NO3- pollutants simultaneously. In this work, a heterostructured Co/Co3O4 electrocatalyst anchored on N-doped carbon nanotubes was prepared and applied for the NO3- reduction towards NH3 under alkaline conditions. The catalyst achieves outstanding performance with up to 67% NH3 faradaic efficiency at -1.2 V vs. Hg/HgO and 8.319 mg h-1 mgcat-1 yield at -1.7 V vs. Hg/HgO. In addition, it also exhibits good long-term stability. 15N isotopic labelling experiments prove that the yielded NH3 is derived from NO3- species. In situ electrochemical Raman spectra revealed that the structure of the as-prepared catalyst showed outstanding stability and identified possible intermediates during the electrocatalytic NO3- reduction reaction (NO3RR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.