Abstract
The water gas shift (WGS) reaction is a key process in the industrial hydrogen production and the development and application of the proton exchange membrane fuel cell. Metal oxide-supported highly dispersed Pt has been proved as an efficient catalyst for the WGS reaction. In this work, a series of supported 0.5Pt/xCe-10Ti (x = 1, 3, or 5) catalysts with different Ce/Ti molar ratios were prepared by a simple deposition-precipitation method. Compared with single TiO2- or CeO2-supported Pt catalysts, it was found that the 0.5Pt/3Ce-10Ti catalyst showed an obvious advantage in activity for the WGS reaction. In this catalyst, dispersed CeO2 nanoparticles were supported on the TiO2 sheets, and Pt single atoms and nanoparticles were located on CeO2 and at the boundary of TiO2 and CeO2, respectively. It found that the reduction ability of the supported Pt catalyst was remarkably improved; meanwhile, the adsorption strength of CO on the surface of 0.5Pt/3Ce-10Ti was moderate. The heterostructured CeO2-TiO2 support gave an effective regulation on the Pt status and further influenced the CO adsorption ability, inducing excellent WGS reaction activity. This work provides a reference for the development and application of heterostructured materials in heterogeneous catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.