Abstract
Niobium pentoxides have received considerable attention and are promising anode materials for lithium-ion batteries (LIBs), due to their fast Li storage kinetics and high capacity. However, their cycling stability and rate performance are still limited owing to their intrinsic insulating properties and structural degradation during charging and discharging. Herein, a series of mesoporous Nb2O5@TiO2 core-shell spherical heterostructures have been prepared for the first time by a sol-gel method and investigated as anode materials in LIBs. Mesoporosity can provide numerous open and short pathways for Li+ diffusion; meanwhile, heterostructures can simultaneously enhance the electronic conductivity and thus improve the rate capability. The TiO2 coating layer shows robust crystalline skeletons during repeated lithium insertion and extraction processes, retaining high structural integrity and, thereby, enhancing cycling stability. The electrochemical behavior is strongly dependent on the thickness of the TiO2 layer. After optimization, a mesoporous Nb2O5@TiO2 core-shell structure with a ∼13 nm thick TiO2 layer delivers a high specific capacity of 136 mA h g-1 at 5 A g-1 and exceptional cycling stability (88.3% retention over 1000 cycles at 0.5 A g-1). This work provides a facile strategy to obtain mesoporous Nb2O5@TiO2 core-shell spherical structures and underlines the importance of structural engineering for improving the performance of battery materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.