Abstract
Clean two-dimensional electron systems in GaAs/AlGaAs heterostructures exhibit anisotropic collective phases, the quantum Hall nematics, at high Landau level occupancy and low temperatures. An as yet unknown native symmetry-breaking potential consistently orients these phases relative to the crystalline axes of the host material. Here we report an extensive set of measurements examining the role of the structural symmetries of the heterostructure in determining the orientation of the nematics. In single quantum well samples we find that neither the local symmetry of the confinement potential nor the distance between the electron system and the sample surface dictates the orientation of the nematic. In remarkable contrast, for two-dimensional electrons confined at a single heterointerface between GaAs and AlGaAs, the nematic orientation depends on the depth of the two-dimensional electron system beneath the sample surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.