Abstract

The dc characteristics of Si1−x−yGexCy P-channel metal–oxide–semiconductor field-effect transistors (PMOSFETs) were evaluated between room temperature and 77 K and were compared to those of Si and Si1−xGex PMOSFETs. The low-field effective mobility in Si1−x−yGexCy devices is found to be higher than that of Si1−xGex (grown in the metastable regime) and Si devices at low gate bias and room temperature. However, with increasing transverse fields and with decreasing temperatures, Si1−x−yGexCy devices show degraded performance. The enhancement at low gate bias is attributed to the strain stabilization effect of C. This application of Si1−x−yGexCy in PMOSFETs demonstrates potential benefits in the use of C for strain stabilization of the binary alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.