Abstract

Rutile titanium dioxide (TiO2) exhibits excellent photoelectrochemical properties but limited photocatalytic performance due to its large band gap and fast electron–hole recombination. Here, we report a composite catalyst of NiTiO3 nanoparticle-coated TiO2 nanorod arrays (NiTiO3/TiO2 NRAs) via an electrostatic assembly strategy. The NiTiO3/TiO2 heterostructure endows an enlarged absorption range and enhanced electron–hole separation efficiency. When being used as an electrode in photoelectrochemical water splitting, it achieves the highest photocurrent density of 1.94 mA cm–2 at 1.0 V versus reversible hydrogen electrode, which is 3.74 times higher than the photocurrent density of pristine rutile TiO2 NRAs (0.51 mA cm–2). The heterostructure engineering strategy is demonstrated to enhance the photoelectrochemical performance, which can be extended to optimize various semiconductor photocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.